NASA
Артем Дубинин
23 апреля 18:59.
262

Возможно ли получение энергии из черной дыры?

Ответить
Ответить
Комментировать
0
Подписаться
2
1 ответ
Поделиться

Да, можно. Проще всего получить энергию, если на черную дыры правильным образом уронить что-то (см. пп. 1-2 ниже). А если на нее ничего не падает, то можно ловить излучение Хокинга (см. п.3). Правда, имея дело с большими дырами, тут больше энергии потратишь, чем получишь. Поэтому надо найти дыру поменьше.

1. Падающий на черную дыру газ излучает много энергии (часть текста выделено мной).

Кваза́р (англ.quasar; из лат.quas(i) «наподобие», «нечто вроде» + англ.(st)ar «звезда») — класс астрономических объектов, являющихся одними из самых ярких (в абсолютном исчислении) в видимой Вселенной.

По современным представлениям, квазары представляют собой активные ядрагалактик на начальном этапе развития, в которых сверхмассивная чёрная дыра поглощает окружающее вещество[1][2], формируя аккреционный диск. Он и является источником излучения, исключительно мощного (иногда в десятки и сотни раз превышающего суммарную мощность всех звёзд таких галактик, как наша) и имеющего помимо космологическогогравитационное красное смещение, предсказанное А. Эйнштейном в общей теории относительности (ОТО).

https://ru.m.wikipedia.org/wiki/Квазар

.

Аккрецио́нный диск (от лат.accrētiō «приращение», «увеличение») — структура, возникающая в результате падения диффузного материала, обладающего вращательным моментом, на массивное центральное тело (аккреция). 

https://ru.m.wikipedia.org/wiki/Аккреционный_диск

.

2. О получении механической энергии от вращающейся черной дыры (часть текста выделена мной).

Поскольку умирающие звезды начинают вращаться все быстрее, когда в ходе коллапса они становятся все меньше, то вполне резонно предположить, что и реальные черные дыры должны вращаться. У них должен быть момент количества движения.

Мысль о том, что достаточно реалистические модели черных дыр должны обладать вращением, не нова. Однако целых пятьдесят лет после создания общей теории относительности во всех расчетах использовалось только решение Шварцшильда. Все понимали, что нужно учитывать влияние вращения, но никто не мог правильно решить уравнения Эйнштейна. Собственно говоря, полное решение уравнений гравитационного поля с учетом вращения должно зависеть от двух параметров - массы черной дыры (обозначаемой буквой М) и момента количества движения дыры (обозначаемого буквой а). Кроме того, это решение должно быть асимптотически плоским, т.е. вдали от черной дыры пространство-время должно становиться плоским. Но уравнения гравитационного поля настолько сложны математически, что никому не удавалось отыскать ни одного точного решения, удовлетворяющего этим простым требованиям.

Решительный шаг вперед в этом направлении был сделан в 1963 г., когда Рой П. Керр, австралийский математик, работавший тогда в Техасском университете (США), нашел полное решение уравнений гравитационного поля для вращающейся черной дыры. Впервые почти за полсотни лет после основополагающей работы Эйнштейна астрофизики получили, наконец, математическое описание геометрии пространства-времени, окружающего массивный вращающийся объект. К 1975 г. была доказана единственность решения Керра. Точно так же, как все возможные решения для черных дыр, обладающих лишь массой (М), эквивалентны решению Шварцшильда, а все возможные решения для черных дыр с массой и зарядом (М и Q) эквивалентны решению Райснера-Нордстрёма, все возможные решения с массой и моментом количества движения (М и а)должны быть эквивалентны решению Керра. Получение решения Керра является одним из важнейших достижений теоретической астрофизики середины XX в.

… До опубликования работы Керра был известен только один существенный эффект, связанный с вращением масс в общей теории относительности, - эффект увлечения инерциальных систем. Его иногда называют эффектом Лензе-Тирринга … . Увлечение инерциальных систем - это такое явление, когда окружающее пространство-время вовлекается во вращение вместе с вращающимся телом. Можно привести общие доводы, которые показывают, что такое явление должно иметь место вблизи любого вращающегося тела. Однако до получения Керром в 1963 г. его решения у астрофизиков не было возможности математически показать, насколько важным должен быть этот эффект в случае вращающихся черных дыр. К концу 1960-х годов подробный анализ увлечения инерциальных систем черными дырами привел к ряду замечательных открытий.

… вблизи вращающейся черной дыры предел статичности расположен выше горизонта событий. Еще задолго до приближения к горизонту событий космонавт на своем корабле обнаружит, что должен двигаться со скоростью света, чтобы оставаться в покое. Внутри предела статичности он окажется вовлеченным в непреодолимое движение внутрь и вокруг дыры независимо от мощности двигателей корабля.

Из того факта, что предел статичности вращающейся черной дыры лежит выше ее горизонта событий, вытекают важные следствия. Как и для всех других черных дыр, после пересечения горизонта событий уже невозможно вернуться в свою Вселенную. Однако из любого места выше горизонта событий вернуться в свою Вселенную всегда возможно. Значит, если космонавт опустился ниже предела статичности, он еще может выбраться наружу, если только он не ушел и под горизонт событий. Иными словами, в пространстве-времени вокруг вращающейся черной дыры существует удивительная область, где оставаться в покое невозможно, но которую можно посещать с возвратом назад в свою Вселенную. Эта область расположена между пределом статичности и горизонтом событий и называется эргосферой.Схематический разрез эргосферы показан на рис. 11.4.

Рис. 11.4.Эргосфера. Между пределом статичности и горизонтом событий, окружающими вращающуюся черную дыру, находится область пространства-времени, называемая эргосферой. Внутри эргосферы невозможно находиться в состоянии покоя, но туда можно попасть и снова выбраться оттуда, не покидая нашу Вселенную. 

Одно из самых удивительных свойств эргосферы было открыто в 1969 г. Роджером Пенроузом. Пенроуз выполнил расчет движения тела, падающего в эргосферу вращающейся черной дыры и распадающегося там на две части. Он предположил, что одна часть падает под горизонт событий (и поэтому теряется навсегда), а другая отскакивает обратно в нашу Вселенную. Этот процесс изображен на рис. 11.5.


          Рис. 11.5.Механизм Пенроуза. Если влетающая в эргосферу частица распадается там на две части, то часть, выбрасываемая назад из эргосферы, может вынести огромное количество энергии. Захваченная часть тела опускается под горизонт событий и "заглатывается" черной дырой. При этом некоторая доля энергии вращения дыры передается выбрасываемой частице. (По Дж. Уилеру.)

Разумеется, возвращающаяся обратно часть будет меньше, чем первоначальное тело. И все же если это тело двигалось точно с нужной скоростью и в нужном направлении, то энергия выброшенной части может стать намного больше энергии первоначального объекта. В результате черная дыра станет вращаться немного медленнее. Таким образом от вращающихся черных дыр можно получить большое количество энергии: с помощью рассмотренного здесь механизма Пенроуза часть энергии вращения дыры может быть передана выбрасываемому из эргосферы веществу.

К астрономическим следствиям этого явления мы обратимся в одной из следующих глав, а сейчас обрисуем научно-фантастическое приложение механизма Пенроуза. Допустим, что некая высокоразвитая цивилизация обнаружила в космосе вращающуюся черную дыру и построила вокруг этой дыры город (рис. 11.6). В городе запущена лента конвейера, уходящая в эргосферу, но повсюду остающаяся выше горизонта событий. Круглосуточно грузовики-мусоровозы собирают в городе все отбросы и перегружают их в контейнеры, расположенные на ленте конвейера. Конвейер уносит их в эргосферу, где весь мусор сбрасывается под горизонт событий. Вытряхивание мусора из контейнеров и есть, по сути, распад объекта на две части. Так как мусор поглощается черной дырой, то каждому контейнеру передается некоторая доля энергии вращения дыры. Поэтому лента конвейера испытывает мощное ускорение при каждом сбрасывании. Ее движение становится все более быстрым. Жители города вокруг черной дыры подключили к ленте конвейера генератор и получают от него огромное количество энергии!

Рис. 11.6.Город, не загрязняющий окружающую среду. Когда мусор из контейнеров выбрасывается с ленты конвейера в эргосфере, лента конвейера испытывает ускорение. Если присоединить к ней электрогенератор, то можно использовать энергию, извлеченную из черной дыры. (По Мизнеру, Торну и Уилеру.)

Другое приложение механизма Пенроуза, хотя и менее фантастическое, но столь же удивительное, было найдено в начале 1970-х годов рядом астрофизиков, в том числе Прессом и Тьюкольским. 

Проходящий вблизи вращающейся черной дыры свет усиливается. Если окружить такую черную дыру сферическим зеркалом, то излучение можно усилить практически неограниченно. Если в зеркале не будет никаких отверстий, то может произойти такое усиление света, что он разорвет на части зеркало и получится чернодырная бомба.Подобно тому как частицы могут извлекать энергию из вращающейся черной дыры при пролете через ее эргосферу, может быть усилено и излучение, проходящее мимо такой дыры. Это явление называется сверхизлучательным рассеянием. Для иллюстрации представим себе черную дыру, окруженную сферическим зеркалом, как на рис. 11.7. 

Рис. 11.7.Сверхизлучательное рассеяние.

Направим луч света на дыру через небольшое отверстие в зеркале. При многократном отражении в сферическом зеркале свет способен извлекать из черной дыры все большее количество энергии, а черная дыра постепенно замедляет вращение. В итоге через отверстие в окружающем дыру зеркале начинает выходить большое количество излучения -получается почти неисчерпаемый источник энергии. Однако если сразу после поступления первоначального луча отверстие в зеркале заделать, то излучению будет некуда выходить. Постоянно встречаясь со сферическим зеркалом и отражаясь от него, излучение будет становиться все более мощным при каждом прохождении через эргосферу. Поэтому зеркало будет подвергаться все более сильному давлению излучения изнутри, пока напряжения в нем не станут столь велики, что зеркальная сфера взорвется, высвобождая огромное количество накопленной им энергии. Таков механизм чернодырной бомбы!

http://www.astronet.ru/db/msg/1174703/kaufman-11/kaufman-11.html

.

3. Излучение Хокинга

Излуче́ние Хо́кинга — гипотетический процесс излучения чёрной дыройразнообразных элементарных частиц, преимущественно фотонов; назван в честь Стивена Хокинга. Излучение Хокинга — главный аргумент учёных относительно распада (испарения) небольших чёрных дыр, которые теоретически могут возникнуть в ходе экспериментов на БАК[1]. На этом эффекте основана идея сингулярного реактора — устройства для получения энергии из чёрной дыры за счёт излучения Хокинга[2].

https://ru.m.wikipedia.org/wiki/Излучение_Хокинга

.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры[2]. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

https://ru.m.wikipedia.org/wiki/Сингулярный_реактор

6
Прокомментировать
Ответить