Как именно кодируется световой сигнал, фокусируясь на сетчатке, в нервный импульс? Что происходит на каждом этапе в каждом слое сетчатки? Максимально подробно.

Ответить
Ответить
Комментировать
0
Подписаться
6
1 ответ
Поделиться
АВТОР ВОПРОСА ОДОБРИЛ ЭТОТ ОТВЕТ

Дисклеймер: многабукаф и сложных, умных и длинных слов. 

За восприятие зрительного сигнала в НСП отвечает фоторецепторный пигмент родопсин, поглощающий квант света и перестраивающий себя. В процессе передачи сигнала на плазматическую мембрану принимают участие четыре белка: родопсин, трансдуцин, фосфодиэстераза сGMP и cGMP-зависимый катионный канал, а cGMP, являясь вторичным мессенджером, непосредственно передает сигнал с мембраны дисков на наружную плазматическую мембрану. Электрофизиологический ответ фоторецепторной клетки на световой стимул длится в течение сотен миллисекунд, а затем прекращается благодаря существования в НСП механизмов, ответственных за выключение фосфодиэстеразного каскада и восстановление темнового состояния.

А теперь вот тут вот всё подробно:

Как палочки, так и колбочки содержат светочувствительные пигменты – рецепторы светового излучения. Во всех палочках человека пигмент один и тот же; колбочки делятся на три типа, каждый из них со своим особым зрительным пигментом. Эти четыре пигмента чувствительны к различным длинам световых волн, и в случае колбочек эти различия составляют основу цветного зрения. В палочках большая часть зрительного пигмента (называемого родопсином) локализована в мембране фоторецепторных дисков. Под воздействием света молекула родопсина поглощает единственный квант видимого света (фотон), что приводит к химической перестройке зрительного рецептора.

В результате поглощения кванта света молекулой родопсина и последующих за этим биохимических реакций происходит закрытие катионных (Na+/Са2+) каналов, что приводит к уменьшению темнового тока и гиперполяризации (увеличению наружного положительного заряда) плазматической мембраны клетки. Свет, повышая потенциал на мембране рецепторной клетки (гиперполяризуя ее), уменьшает выделение медиатора. Таким образом, стимуляция, как ни странно на первый взгляд, выключает рецепторы. 

Первый шаг процесса фототрансдукции – поглощение кванта света фоторецепторным пигментом, родопсином и переход родопсина в фотоактивированное состояние (R —> R*). 

Поглощение родопсином кванта света приводит к ряду его фотохимических превращений – фотолизу. Первичным актом в этом процессе является изомеризация 11-цис-ретиналя в полностью транс-форму. Изомеризация ретиналя является единственным светозависимым процессом в ходе светоактивации родопсина, все остальные стадии фотолиза светонезависимые, они сопряжены с конформационными перестройками в молекуле опсина и реакциями протонирования–депротонирования основания Шиффа, образованного между ретиналем и e-аминогруппой остатка лизина-296 опсина. Между поглощением фотона и изомеризацией ретиналя проходит около 200 фемтосекунд. За этим событием следует образование в течение миллисекунд нескольких промежуточных форм родопсина, каждая из которых характеризуется своим спектром поглощения. Наибольшую важность для биохимических реакций, приводящих к возникновению фоторецепторного ответа, представляет один из интермедиатов фотолиза родопсина – метародопсин II, который содержит непротонированное основание Шиффа с полностью транс-ретиналем и характеризуется значительными конформационными перестройками в сравнении с темновым родопсином.

Метародопсин II (R*) выступает в роли катализатора в процессе активации следующего белка зрительнго каскада, трансдуцина (Т). Ta находится в комплексе с молекулой GDP (Ta -GDP) и связана с димером Тbg . Комплекс (Ta -GDP)-Тbg локализуется на внешней поверхности мембраны дисков и обладает повышенным сродством к метародопсину II. В результате связывания R* с (Ta -GDP)-Тbg индуцируется обмен связанного с Ta GDP на GTP. Комплекс R*-(Ta -GDP)-Тbg быстро диссоциирует на R*, активный комплекс Ta*-GTP и Тbg . Освобождающийся R* способен активировать другую молекулу трансдуцина (рис. 2, III). Активация сотен или даже тысяч молекул трансдуцина единственной молекулой фотовозбужденного родопсина является первым этапом усиления в процессе передачи зрительного сигнала.

T*a-GTP, в свою очередь, активирует следующий белок зрительного каскада – фосфодиэстеразу (PDE) циклического GMP (cGMP). PDEa- и PDEb -субъединицы осуществляют каталитическую функцию гидролица cGMP, а PDEg-субъединица является внутренним ингибитором фермента.

По аналогии с другими рецепторными системами, сопряженными с G-белками, в системе родопсин– трансдуцин-фосфодиэстераза cGMP, PDE является эффекторным белком, а сGMP – вторичным мессенджером. Однако в отличие от большинства рецепторных систем, которые служат для передачи сигнала с внешней стороны клеточной мембраны внутрь клетки, белки зрительного каскада передают сигнал с мембраны дисков, расположенной внутри НСП, на наружную плазматическую мембрану. Рассмотрим этот процесс более подробно. В темноте PDE неактивна, и в цитоплазме палочки поддерживается высокий уровень cGMP за счет активности фермента гуанилатциклазы. В результате этого большая часть сGMP-зависимых катионных (Na+/Са2+) каналов в плазматической мембране НСП находится в открытом состоянии и катионы Na+ и Са2+ свободно диффундируют из внеклеточного пространства в цитозоль, что приводит к деполяризации плазматической мембраны. Проникающие в цитоплазму катионы Na+ удаляются из клетки Na+/K+ - ATP-азой, расположенной в теле палочки (внутреннем сегменте). Внутриклеточная концентрация Са2+ поддерживается на постоянном уровне находящимся в плазматической мембране НСП Na+/Са2+, К+ -катионообменником.

Взаимодействуя с PDE, T*a-GTP снимает ингибирующее воздействие PDEg на фермент, при этом для полной активации PDE необходимо присутствие двух молекул T*a-GTP на молекулу фермента (по одной на каждую PDEg-субъединицу). Активированная фосфодиэстераза (PDE*) гидролизует множество молекул сGMP (до трех тысяч молекул на молекулу активного фермента), и этот процесс является вторым этапом усиления зрительного сигнала. Снижение внутриклеточной концентрации сGMP приводит к закрытию cGMP-зависимых катионных каналов и гиперполяризации плазматической мембраны. 

А инфа взята отсюда, только удалено всё лишнее. Если вам непонятно, бегом по ссылке и читайте полный разбор с пояснениями и рисуночками. 

6
-1

Поставлю лойс, типа понял о чем прочитал

+1
Ответить

Кратко - квант света провоцирует изменения молекулы специального световоспринимающего белка. После каскада изменений молекула белка восстанавливается в исходное состояние, сигнал передается по зрительному нерву.

+1
Ответить

На самом деле напущенную сложность текста создают длинные-предлинные названия всяких химических соединений и белков, незнакомых обывателю. Мне этот текст тоже кажется чересчур сложным, хотя, если попытаться заменить названия молекул чем-то простым и понятным, выходит не так жутко.

0
Ответить
Ещё 1 комментарий

Да я согласна, я могу понять 95 процентов текста без особого напряга, тк всё это (хоть и далеко не так подробно) учили в меде, но мне тупо стало лень читать, я даже первый абзац "подробного" не прочла, загруз сложными словами)

0
Ответить
Прокомментировать
Ответить