Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Почему и зачем у картофеля 48 хромосом, когда у человека, например, 46?

БиологияНаука+3
Daniil
  · 40,7 K
студент-биолог  · 22 дек 2016

Вообще, ученые с этим пока не совсем разобрались. Уже где-то к 70-м годам накопились данные о том, что количество ДНК в ядре не очень-то отражает эволюционное положение вида. Это так называемый С-парадокс (С - количество ДНК в гаплоидном ядре, то есть одинарный набор хромосом). Он заключается в следующем, если упростить:

Количество хромосом весьма условно связано с систематическим положением организма.

«Много хромосом ≠ эволюционно продвинутый вид», вопреки распространенному  представлению.

Дело в том, что ДНК, из которой хромосомы сделаны, это не сплошь структурные гены, кодирующие белки. До 80-90% ДНК может состоять из некодирующей части, раньше она называлась мусорной. Она представляет собой коротенькие «бессмысленные» последовательности, которые расположены блоками и повторены сотни тысяч раз (в последнее время понемножку становится понятнее, зачем они нужны, но сейчас не об этом). Количество этой странной информации сильно влияет на общее число пар нуклеотидов.

Помимо этого, хромосомы неодинаковы по массе. У разных видов в хромосомы «расфасован» разный объем ДНК, соответственно, при одинаковом числе пар нуклеотидов число хромосом может отличаться.

В определенной степени количество ДНК все же соответствует сложности организмов. Например, у вирусов геном варьирует в пределах 1,3–20*10^3, у бактерий 9*10^5–10^6 пар нуклеотидов. В эволюции позвоночных тоже прослеживается тенденция наращивания количества ДНК: у оболочников и ланцетников размер генома составляет соответственно  6 и 17% от размера генома плацентарных млекопитающих. При этом у некоторых рыб и хвостатых земноводных в 25 раз больше ДНК, чем у любого из видов млекопитающих. В общем, всё довольно запутанно.

Отдельно стоит сказать о растениях.

Животное справляется со многими проблемами, меняя условия среды. Жарко – лёг в тень, голодно – перешел на новый источник пищи и всё такое. У растений нет возможности встать и уйти, поэтому большинство задач решается на химическом уровне. Жарко – синтезируешь воск на поверхности листьев, чтобы вода не испарялась. Голодно – договариваешься с азотфиксирующими бактериями, чтобы поделились азотом. В таком духе (это метафора, на самом деле на подобные адаптации уходят тысячи тысяч поколений и заранее неизвестно, что получится). Естественно, чем больше разнообразных циклов и синтезов "умеет" осуществлять растение, тем больше нужно ферментов для работы этих метаболических путей. У растений относительно много структурных генов, в них записаны все эти необходимые белки. Метаболизм животных устроен проще.

А еще для растений характерна такая интересная вещь, как полиплоидия – кратное увеличение числа хромосом. То есть жил-был геном, а потом однажды взял – и умножился на 2, 3, 10 и так далее. И всё нормально, бывает что даже очень хорошо – удваиваются (утраиваются, удесятеряются) элементы цветка, размер плодов, общая биомасса растения. Процесс может запуститься случайно, но селекционеры давно приспособились его провоцировать для получения культурных сортов.  

Для большинства животных такая ситуация очень неполезна, у нас любые резкие отступления от стандартного набора хромосом ведут к уродствам. Суть в том, что число хромосом у растений может в разы отличаться даже внутри семейства. Конечно, всё имеет свою цену – чем больше хромосом, тем больше вероятность что какие-то из них при делении неправильно разойдутся. И меньше вероятность, что найдется другой такой же полиплоид в качестве партнера для размножения. Из-за этого полиплоиды временами оказываются бесплодны. Эволюционный процесс отбраковывает такие, а мы их размножаем вегетативно у себя на клумбах. Но иногда бывает, что всё складывается очень удачно, и образуется целый новый вид. Яркий пример - семейство Ужовниковые (это папоротники). В среднем у разных видов ужовников по 120 пар хромосом, но абсолютный рекордсмен - маленький Ophioglossum reticulatum с диплоидным набором в 631 пару хромосом на клетку (по другим данным, 720). Зачем ему столько и как он весь этот ворох ДНК организует, не ясно. Но раз он всё еще существует как вид, значит, это сработало.

Резюмируя: не завидуйте картошке. Не стоит упрекать её в том, что ей досталось на две хромосомы больше. Это не хорошо и не плохо, не много и не мало, не прогрессивно и не убого. В этом вопросе больше не значит лучше.  Просто так сложились обстоятельства.

Понятно дело, что количество хромосом не имеет прямой зависимости от уровня эволюционного развития вида (и... Читать дальше